

MONTEREY BAY Sealevel Rise VULNERABILITY STUDIES AND ADAPTATION PLANNING

Ross Clark Central Coast Wetlands Group February 9, 2021 Monterey County Board of Supervisors

STATE GUIDANCE ON SLR PLANNING

Table 1. Comparison of OPC 2013 Guidance Document and 2018 Update's Probabilistic SLR projections

SCENARIO BASED PROJECTION: TIME HORIZON	SCENARIO BASED PROJECTION: EMISSIONS SCENARIO	SCENARIO BASED PROJECTION: SLR ¹	PROBABILISTIC PROJECTION: EMISSIONS SCENARIO	PROBABILISTIC PROJECTION: LIKELY RANGE*: 66% PROBABILITY SLR IS BETWEEN	PROBABILISTIC PROJECTION: 1-IN-200 CHANCE**: 0.5% PROBABILITY SLR MEETS OR EXCEEDS	H++ SCENARIO***
2030	Med	4 in	High	3.6 – 6 in	9.6 in	12 in
2060	High	28 in	Low	6 – 14.4 in	27.6 in	45.6
			High	8.4 – 16.8 in	31.2 in	
2100	High	63 in	Low	10.8 – 27.6 in	66 in	121.2
			High	18 – 39.6 in	82.8 in	

Notes: * low risk aversion projection, **Medium-high risk aversion projection, ***Extreme risk aversion projection

TYPES OF COASTAL HAZARDS & TEMPORAL IMPACTS

Cliff erosion

Rising tides

Dune erosion

Storm flooding

Temporary Impacts

- Fluvial Flooding
- Coastal Storm Flooding

Permanent Impacts

- Tidal Inundation
- Cliff and Dune Erosion

EFFECTS OF SEA LEVEL RISE

CUMULATIVE EFFECTS OF COASTAL CLIMATE CHANGE

MOSS LANDING SEA LEVEL RISE VULNERABILITY REPORT

Study Area

Tide gate

Fire Station

Post Office

Educational Facility

2030 with protection (.3 ft SLR) 2060 (2.4 ft SLR) 2100 (5.2 ft SLR)

Coastal Zone Boundary Coastal Armoring

http://coastalresilience.org/project/monterey-bay/

Farmland vulnerable to different coastal hazards at each planning horizon.

Disclaimer: These data represent outputs of regional climate models and are estimates of potential risks.

Final reports available at www.centralcoastwetlands.org

FINANCIAL IMPLICATIONS OF PREDICTED HAZARDS (MOSS LANDING AREA VALUES)

ACCET		2030	2060	2100
AJJLI	UNITS	(WITH PROTECTION)	(NO PROTECTION)	(NO PROTECTION)
Buildings				
Residential	property value	\$8,925,000	\$30,975,000	\$59,325,000
Commercial	property value	\$17,057,808	\$19,104,745	\$21,833,994
Public	replacement cost	\$27,500,000	\$56,500,000	\$64,500,000
Agriculture	property value	\$99,550,000	\$264,500,000	\$276,600,000
Property losses		\$153,032,808	\$371,079,745	\$422,258,994

HAZARD ANALYSIS FINDINGS —LEADING TO ACTION (MOSS LANDING AREA)

By 2060, Moss Landing sand dunes are at risk of wave overtopping, and risk flooding of the lower Salinas Valley.

By 2060 much of the agriculture lands west of Highway 1 will be vulnerable to frequent flooding from more intense rains and higher seas.

By 2060, there may be almost complete loss of services on the Moss Landing island and Harbor may not be viable.

COASTAL EROSION: RISK TO ACTION MOSS LANDING HARBOR VULNERABILITY AND ADAPTATION PLAN (2019)

DUNE EROSION: RISK TO ACTION SALINAS RIVER SB DUNE RESTORATION AND MANAGEMENT PLAN (2020)

RIVER FLOODING: RISK TO ACTION SALINAS VALLEY STORMWATER PLAN (2019)

Table 1. Increases in 100-year Discharge for the Reclamation Ditch System Relative to Historic Period (1950-2000)

EMMISIONS SCENARIO	2030	2060	2100
Medium (RCP 4.5 5 th percentile)	20% Increase	40% Increase	60% Increase
High (RCP 8.5 90 th percentile)	140% Increase	210% Increase	275% Increase

Legend

- Study Area Coastal Zone Boundary Post Office
- Educational Facility

Fluvial Flood Hazard Zones 2030 2060 2100

CASTROVILLE TO THE COAST (2022) (FLOOD RESILIENCE AND PUBLIC ACCESS)

ONGOING PROJECTS AND NEXT STEPS

Lower Salinas Valley floodway management

- Watershed Coordinator Position Funded!
- Castroville to the Coast
- Salinas Valley Stormwater Plan
- GSA watershed planning and coordination
- Salinas River State Beach Management Plan

Moss Landing Community Plan

- Integrate hazards
- Identify infrastructure upgrades
- Update the Moro Cojo Slough Management and Enhancement Plan
- Coordinate Coastal Resiliency efforts with

State Parks, Moss Landing Harbor District, CalTrans, MBARI

Image 1. February 20th, 2017 flooding of lower Salinas Valley (note similarities with hazard map Fig. 16) (Photo: KSBW drone footage)

THANK YOU

Ross Clark Central Coast Wetlands Group Moss Landing Marine Labs www.centralcoastwetlands.org

