

Salinas and Carmel Rivers Basin Study

Monterey County Board of Supervisors Update April 27, 2021

- Study Area
- Study Team
- Basin Study Progress To-date and Schedule to Complete
- Climate Change Considerations and Approach
- Related and Integrated Activities

Study Area

- Sub-Regions for modeling analysis:
- Coastal/Pressure
- Carmel
- East Side
- Middle and Upper Valley
- Paso Robles

Key Study Elements:

- Projections of future water supplies and demands, considering specific impacts from climate change
- Analysis of how existing infrastructure and operations will perform under projected future conditions (e.g., future climate, population, land use, etc.)
- Development of adaptation and mitigation strategies to address current and projected imbalance between supply and demand
- Analysis of adaptation and mitigation strategies, including the extent to which strategies minimize imbalance between supply and demand

Study Team

• Cost share partners:

- Monterey Peninsula Water Management District
- Monterey County Water Resources Agency
- San Luis Obispo County, Department of Public Works
- Monterey One Water
- Bureau of Reclamation (USBR)

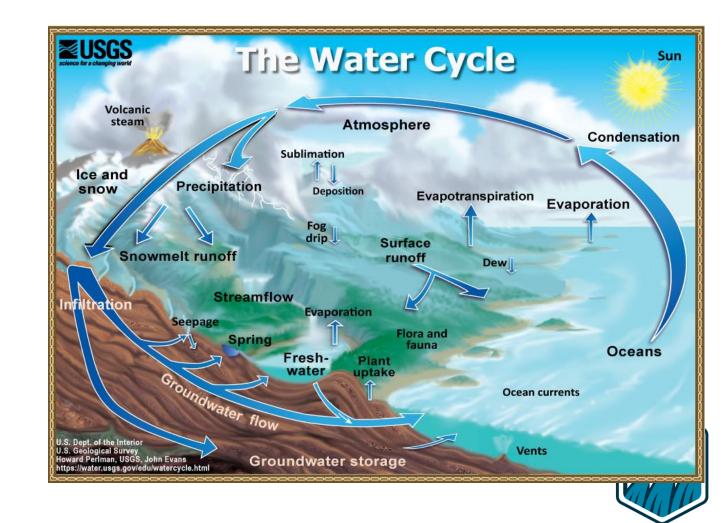
• Mike Dietl – USBR, Project Manager

Contact information: <u>mdietl@usbr.gov</u> (916) 978-5070 California-Great Basin Region

- Ian Ferguson, PhD, PE USBR, Technical Services Center
- Wes Henson, PhD USGS, California Water Science Center
- Melanie Holton, PE Brown & Caldwell, Consultant Team Lead

Progress To-Date and Schedule to Complete

• Complete:


- TM 1. Study Metrics
- TM 2. Future Climate and Sea Level Scenarios
- TM 3. Socioeconomic Scenarios
- TM 4. Model Tools and Inputs

• In Progress:

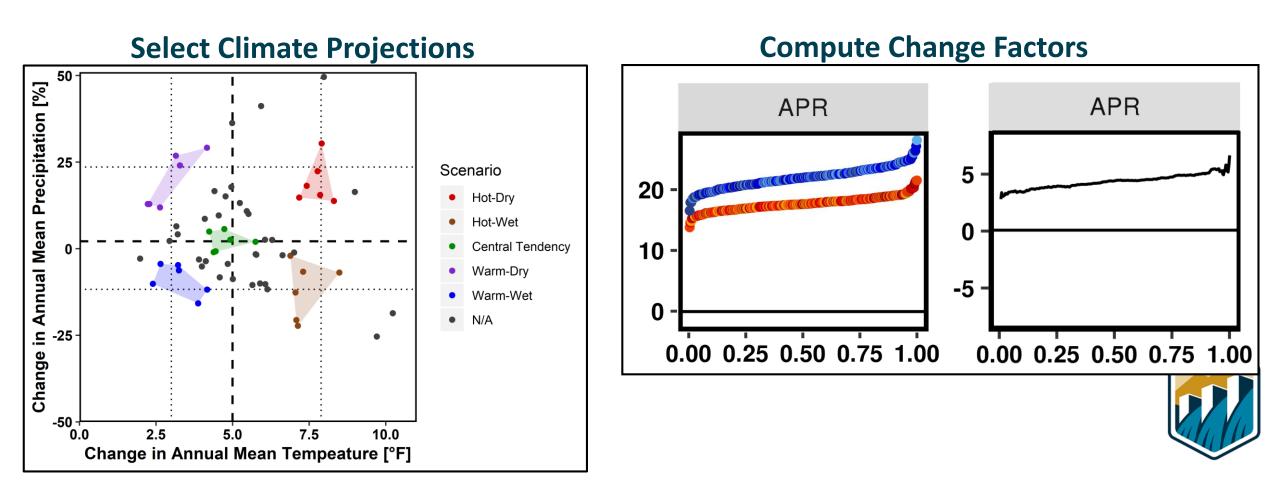
- TM 5. Evaluate Water Supplies, Demands, and Operations
- TM 6. Develop Adaptation and Mitigation Strategies
- TM 7. Evaluate Adaptation and Mitigation Strategies
- Basin Study Summary Report/Executive Summary Summer 2022

- Why consider climate change?
 - Climate is a major driver of water supply and demand
 - Overwhelming scientific consensus:
 - Climate is changing and will continue to change
 - Climate change will impact water supply and demand

- Climate Projections
 - Localized Constructed Analogs (LOCA)
 - Downscaled and bias-corrected GCM projections
 - > 64 Projections
 - ➢ 32 GCMs
 - 2 Emissions Scenarios (RCP 4.5, RCP 8.5)
 - > 1/16° (~6 km) grid resolution

2558	JOURNAL OF HYDROMETEOROLOGY	VOLUME			
	Statistical Downscaling Using Localized Constructed Analogs (LOCA)*				
	DAVID W. PIERCE				
	Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California				
	DANIEL R. CAYAN				
	Division of Climate, Atmospheric Sciences, and Physical Oceanography, Scripps Institution of Oceanography, University of California, San Diego, and U.S. Geological Survey, La Jolla, California				
	BRIDGET L. THRASHER				
	Climate Analytics Group, Menlo Park, California				
	(Manuscript received 16 April 2014, in final form 7 July 2014)				
	ABSTRACT				
	A new technique for statistically downscaling climate model simulations of daily temperature and pre- cipitation is introduced and demonstrated over the western United States. The localized constructed analogs (LOCA) method produces downscaled estimates suitable for hydrological simulations using a multiscale spatial matching scheme to pick appropriate analog days from observations. First, a pool of candidate observed analog days is chosen by matching the model field to be downscaled to observed days over the region that is positively correlated with the point being downscaled, which leads to a natural independence of the downscaling results to the extent of the domain being downscaled. Then, the one candidate analog day that best matches in the local				

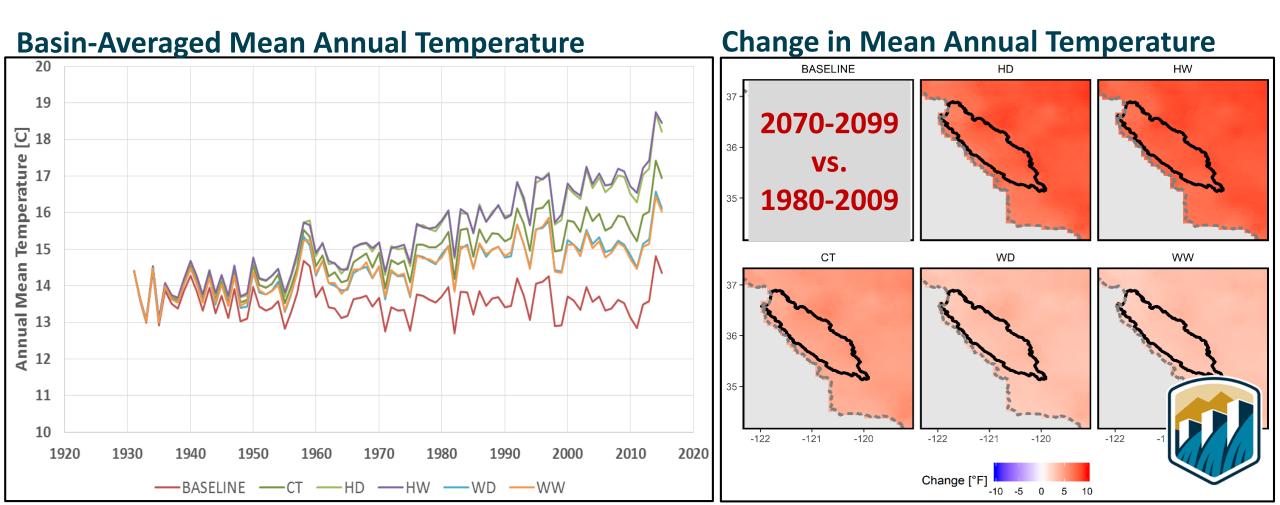
Climate Projections

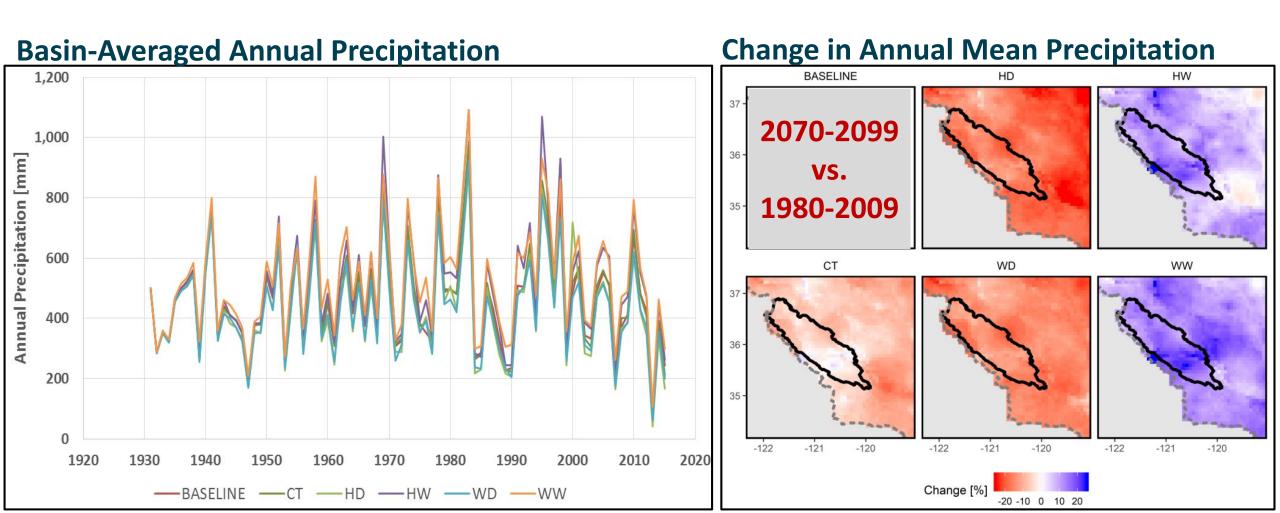

- Strong consensus increase under all projections
- Increase across all timescales (daily, monthly, seasonal, and annual means)
- Increase in variability and extremes
- Potential impacts on *demand* esp. ag demand

- No clear consensus some increase, some decrease
- Change in mean varies by timescales and seasons (e.g., increase in winter, decrease in summer)
- Increase in variability and extremes
- Potential impacts on *supply* runoff and recharge

- Climate Scenarios
 - Objective: Distill large number of climate projections into a manageable number of scenarios for detailed analysis.
 - Approach: Combine *ensemble-informed* and *transient* methods
 - Develop <u>time-varying (transient) climate change</u> <u>factors</u> from sub-set of LOCA ensemble
 - Apply change factors to dataset of <u>observed historical</u> <u>climate</u>
 - Future Climate = Baseline Climate + Projected Change

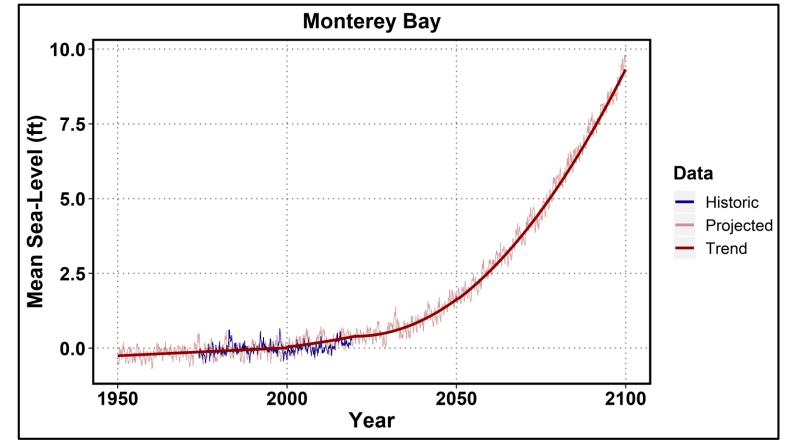
Climate Scenarios


Climate Change Factors


- Climate Scenarios
 - **Climate Change Factors**
 - Change factors computed by decade
 - Interpolated to individual years
 - ➤ Ensemble-Informed → Reflects uncertainty in future climate based on ensemble of projections

Climate Scenarios

Climate Scenarios



- Sea Level Rise
 - Objective: Identify a single representative sea-level rise (SLR) projection for use in the Basin Study
 - Approach: Literature review
 - Review existing scientific literature, including California's latest Climate Change Assessment
 - Select conservative (worst-case) scenario
 - Pair single SLR scenario with all climate scenarios

- Sea Level Rise
 - CanESM2 99.9th percentile probabilistic projection
 - Selected based on:
 - CA Fourth Climate Change Assessment
 - "Worst case" scenario
 - Consistent with prior studies (e.g., Pajaro)

• Summary

	Projected Change in Annual Means by End of 21 st Century (2070-2099 vs. 1980-2009)			
Scenario	Annual Average Precipitation	Annual Average Temperature	Annual Average Sea-Level	
Hot-Wet	+ ~ 20%	+ ~7.5°F	+ 10.1 ft*	
Hot-Dry	-~10%	+ ~3.1°F	+ 10.1 ft*	
Warm-Wet	+ ~20%	+ ~7.5°F	+ 10.1 ft*	
Warm-Dry	-~10%	+ ~3.1°F	+ 10.1 ft*	
Central Tendency	+~1%	+ ~4.8°F	+ 10.1 ft*	

* Change in sea-level provided in terms of equivalent freshwater head. Change reflects conservative (worst case) projection – high-risk upper end-member.

